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A mathematical model of heat transfer in heat-protective materials is suggested with the proviso of a square- 

law temperature dependence of the material density in the zone of thermal destruction of its binder. The 

influence of certain factors on the experimental temperature field and thermal conductivity of a glass- 

reinforced epoxy plastic material is shown. 

Reliable calculation of temperature fields in disintegrating heat-protective materials (HPM) encounters 

certain difficulties brought about by various physicochemical processes (e.g., binder destruction) at elevated 

temperatures and by the dependence of the thermophysical characteristics on both the temperature and the heating 

rate [1 ]. Various mathematical models exist to describe heat transfer in such materials [2-4 ]. In these models 

thermal destruction of the binder is described by an Arrhenius-type equation (isothermal or nonisothermal). This 

equation is difficult to use because of the indeterminacy of its parameters (preexponential factor, activation energy, 

order of the reaction). 
In [5 ] a square-law temperature dependence of the HPM density in the zone of binder destruction is used 

to describe heat transfer under quasistationary conditions of heating the materials. In the present work this 

approach is extended to the case of unsteady-state heating and destruction of HPM. This dependence for material 

density is used in additional terms of the heat conduction equation that take into account heat absorption by the 

binder during its thermal destruction and by gases produced by the destruction. The influence of the heating rate 

on binder destruction is accounted for by the temperatures of the initiation and the termination of this process. In 

[6 ] it was shown that use of this dependence for material density gives a maximum deviation of +3 % in temperature 

field calculations as compared to the actual dependence p (T) in the zone of binder destruction. 

When an HPM is subjected to high-rate one-sided heating, three regimes of its heating are observed: I, 

the heating surface is motionless, the surface temperature is a function of time; II, the heating surface moves 

according to some law, the surface temperature is a function of time; III, a quasistationary regime (the velocity of 

the heating surface is constant with a constant temperature of it). 

Regime I of HPM heating (Vw(T) = 0): 

OT 0 [ 2 ( T )  O__T_T ] + q v ;  (1) 
C v (T) Or - Oy k oyj 

~ ' = 0 ,  T ( y ,  0) = T ( y ) ;  y = 0 ,  T ( 0 ,  z) = T w(r ) ;  y =  oo, T(oo ,  T) = T 0; (2) 

qv AH* 00~T - ~  - OT = - - Cg Gg ~yy ; (4) 

Vg= d y =  f ~ OT/OT 
oo TO OT OT/Oy 

- -  dT.  
(4) 
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The temperature dependence of the HPM density is as follows: 

P 0 ,  

p ( T ) =  p0 [ I _ , p F  ( _ _  

PO (1 - TF), 

T - Tin 
T t - Tin 

2 ] 
To < T < Tin, 

Tin < T < T t ,  

rt _T _r w.  

(5) 

Substituting (5) into (3) and (4), we arrive at the following expressions for the power of internal heat sinks: 

QV 

O, To <- T < Tin, 

2p&F IAH.  aT 
(T~--- Tin) 2 (T - Tin ) + 

c OT f ( T -  Tin ) OT/OT 
+ g ~ T i n  ~ dT , Tin < T < Tt, 

OT 2R&F Tt OT/ OT 
f ( r -  Tin ) ~ d T ,  T t <_ T <  T w. 

(6) 

Regime II of HPM heating (Vw(T) --f(r)). Use of the moving coordinate system 

x = y - S ( r ) ,  S ( r ) =  V w(r) dr ,  
r '  = r ,  "~0 

leads to the following heat conduction equation: 

Cv(T) --~-- Vw(r)-~x =-~x Jl(T)-~x +qv;  (7) 

r = T 0 ,  T ( x ,  r0) = V ( y ,  v0); x = 0 ,  T ( 0 ,  v) = T w(r);  x =  oo, T(oo, r) = T O . (8) 

In the general case, the initial distribution for the direct heat conduction problem (DHCP) in this regime of HPM 
heating is the temperature field obtained from the solution of the DHCP for regime I at the moment r o. At r> T 0 
V w ;~ 0. For regime II of HPM heating the power of internal heat sinks is of the form 
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0 ,  T O < T < Tin , 

2p~ An* ( r  - r i .  ) ~ - V w (T) TX-x + 
(T t - Tin) 2 

+ Cg-~x [~in (T -  T i n ) ~ d l "  2 

Cg (Tt _ T i n )  2 0 x  ~ Ti n ~ dr - 

Vw (0  
2 (Tt - Tin)2 Tt < T < T w 

Tin < T <  Tt, (9) 

R e g i m e  III  o f  H P M  heat ing (Vw(r) = const): 

-VwCv(T) OT d [2(T) dT] 
d x - d x  ~ +--qv, 

x = 0 ,  T ( 0 , v ) = T w ;  x = ~ ,  T ( ~ , v ) = T  0, 

(10) 

(11) 

qv ~" 

O, TO<- T <- Tin, 

po~rVw. 
i.) -~x' ( r ,  7 _ .... I2 * ( r -  + cg ( r -  r d r  

-CgP0TFV w-~x T ,  T t_< T_< T w. 

Tin < T < Tt, (12) 

Regimes I and II of HPM heating may also be realized in a bounded space, e.g., on a plate. In this case, 

the temperature of its "cold" surface will also be a function of time. Regime III may be realized only in a 
semibounded body. Analogously, the problem on heat transfer in an HPM may also be formulated with other 

boundary conditions. 
For calculating the temperature field in regimes II and III of HPM heating there is no need to pass to a 

moving coordinate system if we employ the well-known method of fictitious regions. According to this method, we 

solve the problem in a fixed coordinate system, calculate the position of the moving boundary, and specify an 

infinitely high thermal conductivity to the left of this boundary and the actual material thermal conductivity of the 

material to the right of it. In this case the relations of regime I are adopted. 

In [5 ], for the quasistationary regime of HPM heating a solution of Eq. (10) with account for (11) and 

(12) is obtained in the form 

1 Tw 2 (T)dT 
x=wf  

r f c~ ( r ) d r  + f l ( r )  
ro 

(13) 
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where 

T T T 

fl  (r)  = --AH* Tof O0~TdT-cg fTo fTo O0-~TdTdT" 
For the square-law temperature dependence of the material density (5) we may write 

(14) 

fl (T) = 

0 ,  T O < T <_ Tin , 

2 

PO TF T t - Tin [AH* + (T - Tin ) cg /3] ,  Tin < T < T t , 

p0~oF [AH*+ ( 3 T - 2 T  t -  Tin ) c g / 3 ] ,  T t_< T_< T w. 

(15) 

Relation (13) may be used as a model of a standard unsteady-state temperature field for solving the inverse 

(coefficient) heat conduction problem (IHCP). For this, we must pass to a fixed coordinate system by using the 

relation x -- y -Vw~. By specifying various y (a depth of embedding the thermocouples), we obtain the time depend- 

ences of the temperature in any number of cross sections. The heating rate is varied by means of the linear rate 

of removal. The integrals in (13) may be calculated by any approximate method, e.g., the trapezoidal approximation 

method. In doing so, the error of the temperature field calculation depends on the choice of the temperature step, 

and for small steps (several tens of degrees) it is the hundredths of a percent. 

Based on this solution of DHCP, in [6 ] a procedure is developed for solving the IHCP that makes it possible 

to restore the temperature dependence of the thermal conductivity of the material tested. To implement it, it is 

necessary to record the time variation of the temperature in one cross section of the tested sample under steady-state 

conditions of material destruction (the quasistationary regime of heating). The entire range of thermocouple 

readings from T O to the maximum temperature is subdivided into N intervals in each of which the thermal 

conductivity of the material is considered to be constant. The relation for thermal conductivity calculation is as 

follows: 

V2w (Ti+I - zi) Cv (Ti+I) (16) 
(Ti+ i) = 

In 

m 

Cv (Ti+I) (Ti+I - Ti) 
1 +  T i 

f 
7" 0 

C v (T) dT + fl (Ti+I) 

where i -- 1,N; Ti+ 1 = (Ti + Ti+1)/2. 
The linear rate of material removal under steady-state conditions is determined by any known method. 

The integral in (16) is calculated, e.g., by the trapezoidal method, with the temperature range To-Ti being 

subdivided into any number of intervals. This procedure of solving the IHCP is implemented in the KVAZI program. 

The relations given above for the power of heat sinks include the temperatures of initiation and termination 

of thermal destruction of the HPM binder. They are determined by the extrema of the function ;t(T) [6 ]. 

To elucidate the influence of certain factors on the thermal conductivity of HPMs, we tested epoxy binder- 

based glass-reinforced plastic samples for the cases of convective (products of kerosene combustion in oxygen) and 

radiative (a solar energy accumulator) heating. A sample of the material tested was a composite cylinder in which 

grooves were cut parallel to the heating surface by a I0 -4 m thick diamond disk. The grooves were spaced at a 

distance of - 10 -3 m. Butt-welded thermocouples VR 5/20 with a diameter of 10 -4 m, coated v(ith yttrium dioxide 

as electrical insulation, were set in these grooves. After installation, the grooves were filled with a quartz powder 

to decrease thermal resistance to a heat flux. The size of the quartz particles was (0.63-1.0)- 10 -4 m. 
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Fig. 1. Temperature fields in samples of glass-reinforced epoxy plastic 

material: 1, 2, heating by convection and radiation; T1-T4, readings of the 

I-IVth thermocouples. T, ~ r, sec. 
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Fig. 2. Thermophysical characteristics of the glass-reinforced epoxy plastic 

material (a, b, temperature dependences of volumetric specific heat and 

thermal conductivity, respectively): 1, [12] (qv ~ 0; 2, 3, 6, 7, KVAZI 

(convective heating: qv ~ 0, Cv = const; qv ~ 0, Cv =f(T);  qv = 0, Cv = const; 
approximation of points 6, correspondingly); 4, 5, PROTON (qv -- 0, Cv -- 
const: convective and radiative heating, respectively); 8, [13] (qv-- 0, Cv -- 

const). 2, W/(m.  K); Cv, J / (m 3" K) ; T, ~ 

The results of determination of temperature fields in the epoxy glass-reinforced plastic samples investigated 

under convective and radiative heating conditions are shown in Fig. 1. Equal spacing of curves T1 and T2 for the 

sample subjected to convective heating is indicative of a quasistationary heating regime under these conditions. The 

maximum heating rate (according to the readings of the first thermocouple from the heating surface) was - 1 7 0  

deg/sec while the stationary linear rate of removal of the material was - 2 . 1 0  -4 m/sec. In the case of radiative 

heating no linear removal of the material was observed and the maximum heating rate recorded by the first 

thermocouple was - 13 deg/sec. Thus, Fig. 1 shows temperature fields in the epoxy glass-reinforced plastic samples 

that pertain to regimes I and III of HPM heating. 

These temperature fields were processed in the KVAZI and PROTON programs, implementing methods 

of solution of IHCP. PROTON is a program developed by P. G. Krukovskii (Institute of Theoretical and Technical 

Physics, Academy of Sciences of the Ukraine) that adopts a procedure based on an interpretation of the method 
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[7 ] for solution of IHCP. For its implementation the temperature (as a function of time) must be measured in 3-4 
cross sections of the sample of the material tested. 

The results of using KVAZI for the case of convective heating of the glass-reinforced plastic material are 
represented in Fig. 2b by points 6 and approximating curve 7. The values of ~(T) obtained using PROTON (linear 
spline; broken line 4, Fig. 2b) are close to this curve. The difference is within the limits of the error (30-35%) in 

determining ;t(T) using these procedures. These data on the thermal conductivity of the glass-reinforced plastic 

material are obtained for constant volumetric specific heat and zero power of internal heat sinks. In determining 
2(T) using KVAZI the readings of one thermocouple (T1 and T2) were used but in the case of PROTON four 

thermocouples were used. 
The temperature field in the investigated glass-reinforced plastic under radiative heating was processed in 

the PROTON program. In doing so, we used both a linear and a cubic spline for representing ;t (T). The differences 

between these representations are insignificant in the present case and practically coincide with curve 5 in Fig. 2b. 
A comparison of ~(T) obtained for the cases of radiative (curve 5, Fig. 2b) and convective (curve 7, Fig. 

2b) heating shows that the maximum difference between them is 33% at 550~ which is within the limits of the 

error in determining this characteristic. The fact that curve 5 is lower than curve 7 at low temperatures is probably 

due to semitransparency of the glass-reinforced plastic at low temperatures of the heating surface. This is confirmed 

by an abrupt increase in the thermocouple readings in the first seconds of radiative heating (see Fig. 1, curves 2). 

This leads to an error of alternating sign in temperature measurements [8 ]. An increase in the surface temperature 

initiates thermal destruction of the glass-reinforced plastic binder, whose products prevent penetration of radiation 

inside the material, and the thermal conductivity of the glass-reinforced plastic under radiative heating at 

temperatures above 300~ practically coincides with the )I(T) obtained for convective heating. A similar result was 

obtained in [9 ] for the mean thermal conductivities of coke and the pyrolysis zone of an epoxy glass-reinforced 

plastic binder. 
In Fig. 2b the temperatures of initiation and termination of thermal destruction of the binder found by the 

procedure of [6 ] are marked by arrows. The temperatures determined for convective (curve 7) and radiative (curve 

5) heating concide and are 250 and 550~ respectively. 

Knowing the values of Tin and Tt, we calculated the thermal conductivity of the investigated glass-reinforced 

plastic using the KVAZI program with account for qv. Account for the power of internal heat sinks in the 

mathematical heat transfer model leads to an increase in the thermal conductivity of this material (curve 2, Fig. 

2b). The maximum increase, compared to curve 7, is 65~'o at 1200~ But account for the temperature dependence 

of Cv results in some decrease in )I(T) values (curve 3, Fig. 2b), which is caused by a decrease of the integral of 

Cv(T) in relation (16). 

For plotting curve 3 in Fig. 2b we used the temperature dependence of the volumetric specific heat of the 
epoxy glass-reinforced plastic (Fig. 2a), which is obtained as follows. Up to the temperature Tin this characteristic 

was assumed constant and equal to its value at a room temperature. At the temperatures equal to or higher than 

Tt it was calculated by the  relation 

Cv c (T )  = PcCc = PO (1 - ~oF) [c c (T)7'C + cb (T)~'bl = 

= P 0  [cc(T)~~ - F )  + c b ( T ) ( 1 - ~ o ) ] ,  T_> Tc, 

derived under the assumption that the binder of the composite polymer does not undergo any physicochemical 

changes and does not interact with the coke binder and the coke density does not change. For the epoxy glass- 

reinforced plastic it has been assumed that its coke consists of carbon and silica. Data on the specific heat of these 

substances are taken from [10, 11 ]. In the range Tin-Tt, Cv(T) is considered to be a linear function. 
Thus, )I(T) of the epoxy glass-reinforced plastic is strongIy affected by account for heat absorption in the 

mathematical heat transfer model by the binder during its thermal destruction and by gases produced by this 

destruction. 

For comparison, Fig. 2b shows the data of other authors on thermal conductivity of the epoxy binder-based 

glass-reinforced plastic material (broken line 1 a nd  curve 8) [12, 13 ]. 
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N O T A T I O N  

Cv, volumetric specific heat; T, temperature; 3, time; y, x, coordinates in fixed and moving coordinate 
systems; 2, thermal conductivity; qv, power of internal heat sinks (sources); AH*, specific heat of material 
destruction; PO, Pc~ density of the initial material and coke at room temperature; ~, content of the binder in the 
material; F, gas amplification factor of the binder; cg, Gg, specific heat and mass flow rate of the gaseous products 
of binder destruction; TO, Tw, initial temperature and heating surface temperature, respectively; Vw, linear velocity 
of the heating surface; Tin, Tt, temperatures of initiation and termination of thermal destruction of the binder; ~c~ 
tab, content of carbon and the binder in the coke of the material; Co cc, cb, specific heat of coke, carbon, and the 
binder, respectively. 
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